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Using the notation from the article by T. Bajbar and O. Stein, “Coercive
polynomials and their Newton polytopes”1, the aim of this note is to prove that
there are non-coercive polynomials that are coercive on the curves xy,β(t) =
(y1e

β1t, . . . , yne
βnt) with (y, β) ∈ Ω:

Proposition 1. Let f ∈ R[X1, X2] given by

f = (X2 −X1 − 1)2(X2
1 +X2

2 ).

Then f is not coercive but Ω ⊂ Ωf .

The notion of an asymptotic direction of a curve captures some of the
behaviour of the curve at infinity. Asymptotic directions are elements of the
(n− 1)-sphere Sn−1 = {x ∈ Rn : ∥x∥ = 1}.

Definition 2. Let γ : R → Rn be continuous with limt→+∞ ∥γ(t)∥ = +∞.
We say the curve γ has the asymptotic direction ω ∈ Sn−1 if

lim
t→+∞

γ(t)

∥γ(t)∥
= ω,

or D(γ) = ω for short.

We can now compute the asymptotic directions of the curves xy,β in n = 2
dimensions. To this end let sgn(y) be the sign of y ∈ R where sgn(0) := 0.

Lemma 3. Let n = 2 and (y, β) ∈ Ω. Then an asymptotic direction for xy,β
exists. More precisely, for β we have exactly one of the following cases:

a) β1 = 0. Then D(xy,β) = (0, sgn(y2)) and xy,β is a line parallel to the
x2-axis.

b) β2 = 0. Then D(xy,β) = (sgn(y1), 0) and xy,β is a line parallel to the
x1-axis.

c) β1 < 0. Then D(xy,β) = (0, sgn(y2)).

d) β2 < 0. Then D(xy,β) = (sgn(y1), 0).

e) β1 = β2 > 0. Then D(xy,β) =
y

∥y∥ and xy,β is a line through the origin.

f) β1 > β2 > 0. Then D(xy,β) = (sgn(y1), 0).

g) β2 > β1 > 0. Then D(xy,β) = (0, sgn(y2)).

1Tomáš Bajbar and Oliver Stein. Coercive polynomials and their Newton polytopes.
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Proof. Note that by definition of Y , yi ̸= 0 for all i ∈ [n] throughout this
proof. As β ∈ B, we have β1 ≤ 0 ⇒ β2 > 0 and β2 ≤ 0 ⇒ β1 > 0. Hence,
a), b), c) and d) follow by standard arguments, we show c) as an example.
Indeed, the first component of xy,β(t)/∥xy,β(t)∥ converges to zero for t → +∞
as the nominator is bounded and the denominator is unbounded. The second
component is

y2e
β2t√

y21e
2β1t + y22e

2β2t
=

y2e
β2t

|y2|eβ2t

1√
y21
y22
e2(β1−β2)t + 1

=
sgn(y2)√

y21
y22
e2(β1−β2)t + 1

,

and the denominator converges to 1 for t → +∞, as β1 < 0 and β2 > 0.
Also, e) is clear. To see f), we observe

(y1e
β1t, y2e

β2t) = eβ2t(y1e
(β1−β2)t, y2),

and by absolute homogeneity of the norm, the factor eβ2t has no influence on
the asymptotic direction. So we may neglect it, and the asymptotic direction
is the same as in b), i.e. D(xy,(β1,β2)) = D(xy,(β1−β2,0)) = (sgn(y1), 0). The
proof for g) is similar.

The following lemma allows us to prove Proposition 1. Roughly speaking,
the lemma says that if the asymptotic direction of a curve γ exists and is
not parallel to one of the two “asymptotic directions” of the zero locus of
g(x1, x2) := (x2 − x1 − 1)2, g cannot get arbitrarily small on γ(t) for t large.

Lemma 4. Let γ : R → R2 be continuous with limt→+∞ ∥γ(t)∥ = +∞ and
D(γ) = ω ∈ S1. Put g := (X2 −X1 − 1)2. If ω ̸= ± (1,1)

∥(1,1)∥ there is t0 ∈ R with

g(γ(t)) ≥ 1, t ≥ t0.

Proof. Suppose the contrary and let γ = (γ1, γ2). Thus, for every n ∈ N there
is tn ≥ n with

(γ2(tn)− γ1(tn)− 1)2 < 1. (1)

Now we add zero to find

(γ1(tn), γ2(tn)

∥γ(tn)∥
=

(γ1(tn), γ2(tn)− γ1(tn)− 1 + γ1(tn) + 1)

∥γ(tn)∥
.

We observe, using equation (1) and γ(t) → ∞ for t → ∞, that

lim
n→∞

γ2(tn)− γ1(tn)− 1

∥γ(tn)∥︸ ︷︷ ︸
=:An

→ 0, lim
n→∞

1

∥γ(tn)∥︸ ︷︷ ︸
=:Bn

= 0.
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This implies

ω = lim
n→∞

γ(tn)

∥γ(tn)∥
= lim

n→∞

(
γ1(tn)

∥γ(tn)∥
,
γ1(tn)

∥γ(tn)∥
+An +Bn

)
= lim

n→∞

(γ1(tn), γ1(tn))

∥γ(tn)∥
= (ω1, ω1),

hence ω2 = ω1. However, as ω ∈ S1, this forces ω = ±(1, 1)/∥(1, 1)∥, contra-
dicting the assumption on ω.

Proof of Proposition 1. To see that f(x1, x2) = (x2−x1− 1)2(x21+x22), is not
coercive, we observe that f = 0 on the line x2 = x1+1. To prove that Ω ⊂ Ωf

we need to show

lim
t→+∞

πf (y, β, t) = lim
t→+∞

f(xy,β(t)) = +∞, (y, β) ∈ Ω.

It is enough to show that (x2−x1− 1)2 ≥ 1 on xy,β(t) for large t, as the term
x21 + x22 grows without bound for large t on the curve xy,β(t). We make the
same case distinction on all possible values of β. In view of Lemmata 3 and
4, it is now clear that all choices of β except possibly β1 = β2 > 0, that is
case e), imply coercive behaviour of f on xy,β(t). So let β1 = β2 > 0, hence
xy,β suffices D(xy,β) = y/∥y∥. Lemma 4 tells us that we only need to consider
the cases y/∥y∥ = ±(1, 1)/∥(1, 1)∥. However, we also know that xy,β is a line
through the origin, more precisely of the form (xy,β)2(t) = (xy,β)1(t) – hence
|(xy,β)2(t)− (xy,β)1(t)− 1| = 1 for all t, and f is coercive along xy,β(t) in this
case as well.


