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Abstract We consider design centering problems in their reformulation as gen-
eral semi-infinite optimization problems. The main goal of the arti-
cle is to show that the Reduction Ansatz of semi-infinite programming
generically holds at each solution of the reformulated design centering
problem. This is of fundamental importance for theory and numerical
methods which base on the intrinsic bilevel structure of the problem.

For the genericity considerations we prove a new first order necessary
optimality condition in design centering. Since in the course of our anal-
ysis also a certain standard semi-infinite programming problem turns
out to be related to design centering, the connections to this problem
are studied, too.

Keywords: Optimality conditions, Reduction Ansatz, Genericity, Jet transversality.

1. Introduction

Design Centering. A design centering problem considers a container
set C ⊂ Rm and a parametrized body B(x) ⊂ Rm with parameter vector
x ∈ Rn. The task is to inscribe B(x) into C such that some functional
f , e.g. the volume of B(x), is maximized:

DC : max
x∈Rn

f(x) s.t. B(x) ⊂ C .

appeared in: S. Dempe, V. Kalashnikov (eds): Optimization with Multivalued

Mappings, Springer, 2006, 209-228.
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In Figure 1.1 B(x) is a disk in R2, parametrized by its midpoint and
its radius. The parameter vector x ∈ R3 is chosen such that B(x) has
maximal area in the nonconvex container set C.
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Figure 1.1. A disk with maximal area in a nonconvex container

A straightforward extension of the model is to inscribe finitely many
nonoverlapping bodies into C such that some total measure is maxi-
mized. Figure 1.2 shows the numerical solution of such a multi-body
design centering problem with the same container set as in Figure 1.1
and twelve nonoverlapping disks.
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Figure 1.2. Twelve disks with maximal total area in a nonconvex container

Single-body design centering problems with special sets B(x) and C have
been studied extensively, see e.g. [5] for the complexity of inscribing a
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convex body into a convex container, [12] for maximization of a produc-
tion yield under uncertain quality parameters, and [18] for the problem
of cutting a diamond with prescribed form and maximal volume from a
raw diamond. The cutting stock problem ([2]) is an example of multi-
body design centering.

To give an example of a design centering problem with a rather intricate
container set, consider the so-called maneuverability problem of a robot
from [4]:

Example 1.1 A robot may be viewed as a structure of connected links,
where some geometrical parameters θ1, ..., θR, such as lengths of the links
or angles in the joints, can be controlled by drive motors (cf. Figure 1.3
which is taken from [8]).

TCPθ1

θ3θ2

Figure 1.3. A robot with connected links and a tool center point

The equations of motion for a robot have the form

F = A(θ) · θ̈ + H(θ, θ̇) ,

where F ∈ RR denotes the vector of forces (torques), A(θ) is the inertia
matrix, and H(θ, θ̇) is the vector of friction, gravity, centrifugal and
Coriolis forces. Given vectors F−, F+ ∈ RR of lower and upper bounds
of F as well as an operating region Ω ⊂ RR × RR, the set

C = { θ̈ ∈ RR| F− ≤ A(θ)θ̈ +H(θ, θ̇) ≤ F+ for all (θ, θ̇) ∈ Ω }

describes the accelerations which can be realized in every point (θ, θ̇) ∈ Ω.
Since the size of C is a measure for the usefulness of a given robot for
certain tasks, an approximation for the volume of C is sought in [4]:
Find a simple body B which is parametrized by a vector x such that
B(x) is as large as possible and contained in C. In this way we arrive
at a design centering problem DC.
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The aim of this article is to use techniques from general semi-infinite
programming to treat a broad class of design centering problems theo-
retically as well as numerically. In fact, Example 1.1 gave rise to one of
the first formulations of a general semi-infinite optimization problem in
[8].

Semi-infinite Programming. The connection of design centering to
semi-infinite programming is straightforward: let C be described by the
inequality constraint c(y) ≤ 0. Then the inclusion

B(x) ⊂ C = { y ∈ Rm| c(y) ≤ 0 }
is trivially equivalent to the semi-infinite constraint

c(y) ≤ 0 ∀ y ∈ B(x) .

Thus the design centering problem DC is equivalent to the general semi-
infinite problem

GSIPDC : max
x

f(x) s.t. c(y) ≤ 0 ∀ y ∈ B(x) .

Problems of this type are called semi-infinite as they involve a finite-
dimensional decision variable x and possibly infinitely many inequality
constraints

g(x, y) ≤ 0 ∀ y ∈ B(x) ,

where in design centering the function g(x, y) := c(y) does not depend
on x.

On the other hand, in a so-called standard semi-infinite optimization
problem there is no x−dependence in the set B(x), i.e. the semi-infinite
index set B(x) ≡ B is fixed. Standard semi-infinite optimization prob-
lems have been studied systematically since the early 1960s. For an
extensive survey on standard semi-infinite programming see [7].

As it turned out more recently in [16], general semi-infinite programming
is intrinsically more complicated than standard semi-infinite program-
ming, so that some basic theoretical and numerical strategies cannot
be transferred from the standard to the general case. In particular, the
feasible set M of GSIP may be nonclosed and exhibit a disjunctive struc-
ture even for defining functions in general position. An introduction to
general semi-infinite programming is given in [21].

Bilevel Programming. The key to the theoretical treatment of general
semi-infinite programming and to the conceptually new solution method
from [23] lies in the bilevel structure of semi-infinite programming. In
the following we briefly sketch the main ideas of this approach.
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Consider the general semi-infinite program

GSIP : max
x

f(x) s.t. g(x, y) ≤ 0 ∀ y ∈ B(x) ,

where for all x ∈ Rn we have

B(x) = { y ∈ Rm| w(x, y) ≤ 0 } .

Let the defining functions f : Rn → R and g, w : Rn × Rm → R be at
least once continuously differentiable, and let ∇xg denote the column
vector of partial derivatives of g with respect to x, etc. Then the set-
valued mapping B : Rn→→Rm is closed. Let B also be locally bounded,
i.e. for all x̄ ∈ Rn there exists a neighborhood U of x̄ and a bounded set
Y ⊂ Rm with B(x) ⊂ Y for all x ∈ U . Note that then B(x) is compact
for each x ∈ Rn. We also assume that B(x) is nonempty for all x ∈ Rn.

Under these assumptions it is easy to see that the semi-infinite constraint
in GSIP is equivalent to

ϕ(x) := max
y∈B(x)

g(x, y) ≤ 0 ,

which means that the feasible set M of GSIP is the lower level set of
some optimal value function. In fact, ϕ is the optimal value function of
the so-called lower level problem

Q(x) : max
y∈Rm

g(x, y) s.t. w(x, y) ≤ 0 .

In contrast to the upper level problem which consists in maximizing f
over M , in the lower level problem x plays the role of an n−dimensional
parameter, and y is the decision variable. The main computational prob-
lem in semi-infinite programming is that the lower level problem has to
be solved to global optimality, even if only a stationary point of the
upper level problem is sought.

Since under the assumptions of closedness and local boundedness of the
set-valued mapping B and the continuity of g the optimal value function
ϕ is at least upper semi-continuous, points x ∈ Rn with ϕ(x) < 0 belong
to the topological interior of M . For investigations of the local structure
of M or of local optimality conditions we are only interested in points
from the boundary ∂M of M , so that it suffices to consider the zeros of
ϕ, i.e. points x ∈ Rn for which Q(x) has vanishing maximal value. We
denote the corresponding globally maximal points of Q(x) by

B0(x) = { y ∈ B(x)| g(x, y) = 0 } .
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The Reduction Ansatz. When studying semi-infinite problems, it
is of crucial importance to control the elements of B0(x) for varying
x. This can be achieved, for example, by means of the implicit function
theorem. For x̄ ∈M a local maximizer ȳ of Q(x̄) is called nondegenerate
in the sense of Jongen/Jonker/Twilt ([14]), if the linear independence
constraint qualification (LICQ), strict complementary slackness (SCS)
and the second order sufficiency condition D2

yL(x̄, ȳ, γ̄)|TȳB(x̄) ≺ 0 are
satisfied. Here L(x, y, γ) = g(x, y) − γ w(x, y) denotes the lower level
Lagrangian, TȳB(x̄) is the tangent space to B(x̄) at ȳ, and A ≺ 0 stands
for the negative definiteness of a matrix A. The Reduction Ansatz is said
to hold at x̄ ∈ M if all global maximizers of Q(x̄) are nondegenerate.
Since nondegenerate maximizers are isolated, and B(x̄) is a compact set,
the set B0(x̄) can only contain finitely many points. By a result from
[3] the local variation of these points with x can be described by the
implicit function theorem.

The Reduction Ansatz was originally formulated for standard semi-
infinite problems in [6] and [24] under weaker regularity assumptions.
It was transferred to general semi-infinite problems in [9]. For standard
semi-infinite problems the Reduction Ansatz is a natural assumption in
the sense that for problems with defining functions in general position
it holds at each local maximizer ([19, 25]). For GSIP this result can be
transferred to local maximizers x̄ with |B0(x̄)| ≥ n ([20]). Moreover, in
[22] it is shown that it holds in the “completely linear” case, i.e. when
the defining functions f , g and w of GSIP are affine linear on their
respective domains. For GSIP without these special structures, until
now it is not known whether the Reduction Ansatz generically holds at
all local maximizers. Note that even if this general result was true, it
would not necessarily mean that the Reduction Ansatz holds generically
at local maximizers of GSIPDC . In fact, only such specially structured
perturbations of the defining functions of GSIPDC are allowed which
leave the function c independent of x.

Under the Reduction Ansatz it was not only shown that M can locally
be described by finitely many smooth inequality constraints ([9]), but
it also serves as a regularity condition for the convergence proof of the
numerical solution method from [23]. For completeness, we briefly sketch
the main idea of this bilevel method.

A numerical method for GSIP. To make the global solution of the
lower level problem computationally tractable, we assume that Q(x) is
a regular convex problem for all x ∈ Rn, i.e. the functions −g(x, ·) and
w(x, ·) are convex in y, and B(x) possesses a Slater point. It is well-
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known that then the global solutions of the problem Q(x) are exactly
its Karush-Kuhn-Tucker points: y solves Q(x) if and only if there exists
some γ ∈ R such that

∇yL(x, y, γ) = 0
γ · w(x, y) = 0

γ, −w(x, y) ≥ 0 .

For this reason it makes sense to replace the problem GSIP, in which
only optimal values of the lower problem enter, by a problem which also
uses lower level optimal points. In fact, we first consider the Stackelberg
game

SG : max
x,y

f(x) s.t. g(x, y) ≤ 0, y solves Q(x) .

Note that the decision variable of SG resides in the higher-dimensional
space Rn × Rm, i.e. GSIP is lifted. In [22] it is shown that under our
assumptions the orthogonal projection of the feasible set of SG to Rn

coincides with the feasible set of GSIP, so that the x−component of any
solution of SG is a solution of GSIP.

In a second step we replace the restriction that y solves Q(x) in SG
equivalently by the corresponding Karush-Kuhn-Tucker condition:

MPCC : max
x,y,γ

f(x) s.t. g(x, y) ≤ 0

∇yL(x, y, γ) = 0
γ · w(x, y) = 0

γ, −w(x, y) ≥ 0 .

The resulting mathematical program with complementarity constraints
lifts the problem again to a higher-dimensional space, but now MPCC
solution techniques may be applied. One possibility is to reformulate the
complementarity conditions in MPCC by means of an NCP function Φ
like the Fischer-Burmeister function Φ(a, b) = a+b−||(a, b)||2 , and then
to regularize the necessarily nonsmooth or degenerate NCP function by
a one-dimensional parameter τ > 0, e.g. to Φτ (a, b) = a+b−||(a, b, τ)||2 .
An obvious idea for a numerical method is to solve the finite and regular
optimization problems

Pτ : max
x,y,γ

f(x) s.t. g(x, y) ≤ 0

∇yL(x, y, γ) = 0
Φτ ( γ,−w(x, y) ) = 0
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for τ ↘ 0. For details and for a convergence proof of this method see
[21].

As mentioned before, this convergence proof relies on the Reduction
Ansatz in the solution point. Although for general semi-infinite prob-
lems it is not clear yet whether the Reduction Ansatz holds generically
in each local solution, in numerical tests convergence can usually be ob-
served. The numerical examples in Figures 1.1 and 1.2 were actually
generated by this algorithm, applied to the general semi-infinite refor-
mulation GSIPDC of DC.

The present article will show that for the specially structured problems
GSIPDC which stem from a reformulation of DC, the Reduction Ansatz
in each local maximizer is generic. In Section 2 we derive a first order
necessary optimality condition for DC which will be the basis of the
genericity considerations in Section 3. Section 4 presents some connec-
tions to a standard semi-infinite problem that can be associated with
DC, before Section 5 closes the article with some final remarks.

2. First order optimality conditions

Let us consider the slightly more general design centering problem

DC : max
x∈Rn

f(x) s.t. B(x) ⊂ C

with
C = { y ∈ Rm| cj(y) ≤ 0, j ∈ J }

and
B(x) = { y ∈ Rm| v`(y) ≤ 0, ` ∈ L, w(x, y) ≤ 0 }

with finite index sets J and L, and with at least once continuously
differentiable defining functions f , cj , j ∈ J , v` , ` ∈ L, and w. We
assume that C and

Y = { y ∈ Rm| v`(y) ≤ 0, ` ∈ L }
are nonempty and compact sets. In applications the set Y can often
be chosen to contain C so that the compactness of C follows from the
compactness of Y . Moreover, the local boundedness of the set-valued
mapping B is a trivial consequence of the boundedness of Y .

The general semi-infinite reformulation of DC now becomes a problem
with finitely many semi-infinite constraints,

GSIPDC : max
x

f(x) s.t. cj(y) ≤ 0 ∀ y ∈ B(x) , j ∈ J ,
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and finitely many lower level problems Qj(x) with optimal value func-
tions ϕj(x) and optimal points Bj

0(x), j ∈ J . For x̄ ∈ M we denote
by

J0(x̄) = { j ∈ J | ϕj(x̄) = 0 }
the set of active semi-infinite constraints. From the upper semi-continuity
of the functions ϕj , j ∈ J, it is clear that at each feasible boundary
point x̄ ∈M ∩ ∂M the set

⋃
j∈J0(x̄)B

j
0(x̄) is nonempty. For the problem

GSIPDC we can show that an even smaller set is nonempty. In fact,
with

Bj
00(x̄) = { y ∈ Bj

0(x̄)| w(x̄, y) = 0 }
the following result holds.

Lemma 1.2 For each feasible boundary point x̄ ∈ M ∩ ∂M the set⋃
j∈J0(x̄)B

j
00(x̄) is nonempty.

Proof. For x̄ ∈ ∂M there exists a sequence xν → x̄ with xν 6∈M for all
ν ∈ N. By definition of M , for all ν ∈ N there exists some yν ∈ B(xν)
and some jν ∈ J with cjν (yν) > 0 .

As J is a finite set, the sequence (jν)ν∈N contains some index j0 ∈ J in-
finitely many times. Taking the corresponding subsequence if necessary,
we may assume jν ≡ j0 without loss of generality.

Moreover, as B is locally bounded at x̄, the sequence (yν)ν∈N is bounded
and, thus, without loss of generality convergent to some ȳ ∈ Rm. From
the closedness of the set-valued mapping B and xν → x̄ we also obtain
ȳ ∈ B(x̄). The feasibility of x̄ means that for all j ∈ J and all y ∈ B(x̄)
we have cj(y) ≤ 0, so that we arrive at

0 ≤ lim
ν→∞ cj0(y

ν) = cj0(ȳ) ≤ 0 .

This implies ȳ ∈ Bj0
0 (x̄) as well as j0 ∈ J0(x̄).

Next, assume that for some ν ∈ N it is w(x̄, yν) ≤ 0. Since we have
yν ∈ Y , it follows yν ∈ B(x̄). From x̄ ∈M we conclude that cj0(y

ν) ≤ 0,
in contradiction to the construction of yν . Consequently we have

for all ν ∈ N : 0 < w(x̄, yν) . (1.1)

Together with yν ∈ B(xν) for all ν ∈ N it follows

0 ≤ lim
ν→∞ w(x̄, yν) = w(x̄, ȳ) = lim

ν→∞ w(xν , yν) ≤ 0

and thus ȳ ∈ Bj0
00(x̄). •



10

A usual starting point for genericity considerations is a first order opti-
mality condition which holds without any regularity assumptions. For
general semi-infinite problems

GSIP : max
x

f(x) s.t. gj(x, y) ≤ 0 ∀ y ∈ B(x) , j ∈ J ,

such a condition is given in [16]. To formulate this condition, we denote
by

Lj(x, y, α, β, γ) = α gj(x, y)− β>v(y)− γ w(x, y) , j ∈ J,
the Fritz-John type lower level Lagrangians, and for x̄ ∈ M , j ∈ J0(x̄)
and ȳ ∈ Bj

0(x̄) by

FJ j(x̄, ȳ) = { (α, β, γ) ∈ R× R|L| × R| (α, β, γ) ≥ 0, ||(α, β, γ)||1 = 1,
∇yLj(x̄, ȳ, α, β, γ) = 0, Lj(x̄, ȳ, α, β, γ) = 0 }

the corresponding sets of Fritz-John multipliers.

Theorem 1.3 ([16]) Let x̄ ∈ M ∩ ∂M be a local maximizer of GSIP.
Then there exist pj ∈ N, ȳj,k ∈ Bj

0(x̄), (αj,k, βj,k, γj,k) ∈ FJ j(x̄, ȳj,k),
and nontrivial multipliers κ ≥ 0, λj,k ≥ 0, 1 ≤ k ≤ pj, j ∈ J0(x̄), such
that

∑
j∈J0(x̄) pj ≤ n+ 1 and

κ∇f(x̄) −
∑

j∈J0(x̄)

pj∑

k=1

λj,k∇xLj(x̄, ȳj,k, αj,k, βj,k, γj,k) = 0 .

This condition simplifies significantly for the problem GSIPDC . In fact,
in the lower level Lagrangians

Lj(x, y, α, β, γ) = α cj(y)− β>v(y)− γ w(x, y) , j ∈ J ,
only the function w depends on x, so that we obtain

∇xLj(x, y, α, β, γ) = −γ∇xw(x, y) .

The following result is thus immediate.

Corollary 1.4 Let x̄ ∈ M ∩ ∂M be a local maximizer of DC. Then
there exist pj ∈ N, ȳj,k ∈ Bj

0(x̄), (αj,k, βj,k, γj,k) ∈ FJ j(x̄, ȳj,k), and
nontrivial multipliers κ ≥ 0, λj,k ≥ 0, 1 ≤ k ≤ pj, j ∈ J0(x̄), such that∑

j∈J0(x̄) pj ≤ n+ 1 and

κ∇f(x̄) +
∑

j∈J0(x̄)

pj∑

k=1

λj,k γj,k∇xw(x̄, ȳj,k) = 0 . (1.2)
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A major disadvantage of condition (1.2) is that it does not guarantee
the linear dependence of the vectors ∇f(x̄), ∇xw(x̄, ȳj,k), 1 ≤ k ≤ pj ,
j ∈ J0(x̄). In fact, it is easy to construct situations in which κ = 0
and γj,k = 0, 1 ≤ k ≤ pj , j ∈ J0(x̄). Since the linear dependence of
these vectors is crucial for genericity investigations, next we will give a
stronger optimality condition.

It is not surprising that this strengthening is possible if one compares
the situation to that of standard semi-infinite programming: also there
only one of the lower level defining functions depends on x, namely
gj(x, y). The corresponding first order optimality condition deduced
from Theorem 1.3 involves multiplier products λj,k αj,k as coefficients
of the vectors ∇xgj(x̄, ȳj,k), whereas from John’s original condition for
standard semi-infinite programs ([13]) it is clear that a single coefficient
µj,k would suffice.

Theorem 1.5 Let x̄ ∈M∩∂M be a local maximizer of DC. Then there
exist pj ∈ N, ȳj,k ∈ Bj

00(x̄), and nontrivial multipliers κ ≥ 0, µj,k ≥ 0,
1 ≤ k ≤ pj, j ∈ J0(x̄), such that

∑
j∈J0(x̄) pj ≤ n+ 1 and

κ∇f(x̄) +
∑

j∈J0(x̄)

pj∑

k=1

µj,k∇xw(x̄, ȳj,k) = 0 . (1.3)

The proof of Theorem 1.5 needs some preparation. Recall that the outer
tangent cone (contingent cone) Γ?(x̄,M) to a set M ⊂ Rn at x̄ ∈ Rn is
defined by d̄ ∈ Γ?(x̄,M) if and only if there exist sequences (tν)ν∈N and
(dν)ν∈N such that

tν ↘ 0, dν → d̄ and x̄+ tνdν ∈M for all ν ∈ N .
Moreover, we define the inner tangent cone Γ(x̄,M) to M at x̄ ∈ Rn as:
d̄ ∈ Γ(x̄,M) if and only if there exist some t̄ > 0 and a neighborhood D
of d̄ such that

x̄+ t d ∈M for all t ∈ (0, t̄), d ∈ D .

It is well-known ([17]) that Γ(x̄,M) ⊂ Γ?(x̄,M) and that Γ(x̄,M)c =
Γ?(x̄,M c), where Ac denotes the set complement of a set A ⊂ Rn. Fur-
thermore, the following primal first order necessary optimality condition
holds.
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Lemma 1.6 ([17]) Let x̄ be a local maximizer of f over M . Then there
exists no contingent direction of first order ascent in x̄:

{ d ∈ Rn| 〈∇f(x̄), d 〉 > 0 } ∩ Γ?(x̄,M) = ∅ .

Lemma 1.7 For x̄ ∈M each solution d0 ∈ Rn of the system

〈∇xw(x̄, y), d 〉 > 0 for all y ∈ Bj
00(x̄), j ∈ J0(x̄) (1.4)

is an element of Γ(x̄,M).

Proof. Let d0 be a solution of (1.4) and assume that d0 ∈ Γ(x̄,M)c.
Then we have d0 ∈ Γ?(x̄,M c), so that there exist sequences (tν)ν∈N and
(dν)ν∈N such that tν ↘ 0, dν → d0 and xν := x̄ + tνdν ∈ M c for all
ν ∈ N.

Exactly like in the proof of Lemma 1.2 we can now construct some
j0 ∈ J0(x̄) and a sequence yν ∈ B(xν) with yν → ȳ ∈ Bj0

00(x̄). For
all ν ∈ N the mean value theorem guarantees the existence of some
θν ∈ [0, 1] with

0 ≥ w(x̄+ tνdν , yν) = w(x̄, yν) + tν〈∇xw(x̄+ θνtνdν , yν), dν 〉 .

From (1.1) and tν > 0 we conclude 0 > 〈∇xw(x̄+θνtνdν , yν), dν 〉 for all
ν ∈ N which implies 0 ≥ 〈∇xw(x̄, ȳ), d0 〉. Hence we have constructed
some j0 ∈ J0(x̄) and ȳ ∈ Bj0

00(x̄) with 〈∇xw(x̄, ȳ), d0 〉 ≤ 0, in contradic-
tion to the assumption. •
A combination of Lemma 1.6, the inclusion Γ(x̄,M) ⊂ Γ?(x̄,M), and
Lemma 1.7 yields that at a local maximizer x̄ of DC the system

〈∇f(x̄), d 〉 > 0, 〈∇xw(x̄, y), d 〉 > 0 for all y ∈ Bj
00(x̄), j ∈ J0(x̄)

is not soluble in d. By a theorem of the alternative this result is equiv-
alent to the assertion of Theorem 1.5. In the following conv(S) denotes
the convex hull of a set S ⊂ Rn, i.e. the set of all finite convex combi-
nations of elements from S.

Lemma 1.8 (Lemma of Gordan, [1, 10]) Let S ⊂ Rn be nonempty
and compact. Then the inequality system

s>d > 0 for all s ∈ S

is inconsistent for d ∈ Rn if and only if 0 ∈ conv(S).



A semi-infinite approachto design centering 13

Recall that in the case 0 ∈ conv(S) it is possible to express the origin
as the convex combination of at most n + 1 elements from S, due to
Carathéodory’s theorem.

Since the set
⋃

j∈J0(x̄)B
j
00(x̄) is compact as the finite union of closed

subsets of the compact set B(x̄), Lemma 1.8 implies Theorem 1.5. Note
that if the latter union of sets was empty, we would simply obtain the
condition∇f(x̄) = 0 from unconstrained optimization. However, in view
of Lemma 1.2 under the assumption x̄ ∈ M ∩ ∂M of Theorem 1.5 this
is not possible.

3. Genericity of the Reduction Ansatz

Multi-jet transversality. In the following we give a short introduction
to transversality theory, as far as we need it for our analysis. For details,
see [11, 15]. Two smooth manifolds V,W in RN are said to intersect
transversally (notation: V >∩W ) if at each intersection point u ∈ V ∩W
the tangent spaces TuV, TuW together span the embedding space:

TuV + TuW = RN . (1.5)

The number N − dimV is called the codimension of V in RN , shortly
codimV , and we have

codimV ≤ dimW (1.6)

whenever V >∩W and V ∩W 6= ∅. For our purpose, the manifold W is
induced by the 1-jet extension of a function F ∈ C∞(RN ,RM ), i.e. by
the mapping

j1F : RN −→ J(N,M, 1), z 7−→ (z, F (z), Fz(z))

where J(N,M, 1) = RN+M+N ·M and the partial derivatives are listed
according to some order convention ([15]). Choosing W as the graph of
j1F (notation: W = j1F (RN )) it is easily shown that W is a smooth
manifold of dimension N in J(N,M, 1). Given another smooth manifold
V in J(N,M, 1), we define the set

>∩1V = {F ∈ C∞(RN ,RM )| j1F (RN ) >∩ V } .
Our analysis bases on the following theorem which is originally due to
R. Thom. For proofs see [11, 15].

Theorem 1.9 (Jet transversality) With respect to the C∞s -topology,
the set >∩1V is generic in C∞(RN ,RM ).
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Here, C∞s denotes the Whitney topology ([11, 15]). In particular, >∩1V
is C∞s -dense in C∞(RN ,RM ) and hence, Cd

s -dense in Cd(RN ,RM ) for
any d ∈ N0 = N ∪ {0} ([11]).

Since jet transversality gives information about certain properties of the
functions under investigation only at every single point we apply the
concept of multi-jet transversality instead ([15]). Thereby we are able
to study properties that have to be satisfied at all global maximizers of
the lower level problem at the same time. Let D be a positive integer
and define

RN
D =

{
(z1, . . . , zD) ∈ ∏D

k=1RN | zi 6= zj for 1 ≤ i < j ≤ D
}

as well as the multi-jet space

JD(N,M, 1) ={
(z1, u1, . . . , zD, uD) ∈ ∏D

k=1J(N,M, 1)| (z1, . . . , zD) ∈ RN
D

}
.

The multi-jet extension j1DF : RN
D −→ JD(N,M, 1) is the mapping

j1DF : (z1, . . . , zD) 7−→ (
j1F (z1), . . . , j1F (zD)

)
,

and for a smooth manifold V in JD(N,M, 1) we define the set
>∩1

DV = {F ∈ C∞(RN ,RM )| j1DF (RN
D) >∩ V } .

Theorem 1.10 (Multi-jet transversality) With respect to the C∞s -
topology, the set >∩1

DV is generic in C∞(RN ,RM ).

Rank conditions. For M,N ∈ N and R ≤ min(M,N) let us define the
set of matrices of rank R,

RM×N
R =

{
A ∈ RM×N

∣∣∣ rank(A) = R
}
.

Moreover, for M,N ∈ N, R ≤ min(M,N), I ⊂ {1, ...,M} and
max(R+ |I| −M, 0) ≤ S ≤ min(R, |I|) we let

RM×N
R,I,S =

{
A ∈ RM×N

R

∣∣∣ A(I) ∈ R(M−|I|)×N
R−S

}
,

where the matrix A(I) results from A by deletion of the rows with indices
in I. Observe that the above restrictions on S follow from the trivial
relations 0 ≤ R− S ≤M − |I| and R− |I| ≤ R− S ≤ R .

These definitions are intimately related to the Reduction Ansatz in the
lower level problem. In fact, for x̄ ∈ M and some j ∈ J0(x̄) let ȳ
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be a maximizer of Qj(x̄). From the first order necessary optimality
condition of Fritz John we known that then the gradient ∇cj(ȳ) and the
gradients of the active inequality constraints are linearly dependent. To
identify these constraints conveniently we put L = {1, ..., s} with s ∈ N,
vs+1(x, y) := w(x, y), Λ = L ∪ {s + 1}, Λ0(x̄, ȳ) = {` ∈ Λ| v`(x̄, ȳ) =
0}, and s0 = |Λ0(x̄, ȳ)|. Let DyvΛ0(x̄, ȳ) denote the matrix with rows
Dyv`(x̄, ȳ) := ∇>y v`(x̄, ȳ), ` ∈ Λ0(x̄, ȳ). We obtain

(
Dycj(x̄, ȳ)
DyvΛ0(x̄, ȳ)

)
∈ R(1+s0)×m

ρj

with ρj ≤ s0. With this notation, LICQ is equivalent to
(

Dycj(x̄, ȳ)
DyvΛ0(x̄, ȳ)

)
∈ R(1+s0)×m

s0 , {0},0 ,

if we identify the first row of the matrix with the index ` = 0. Moreover,
SCS implies (

Dycj(x̄, ȳ)
DyvΛ0(x̄, ȳ)

)
∈ R(1+s0)×m

s0 , {`},0 ,

for all ` ∈ Λ0(x̄, ȳ) .

For a matrix A ∈ RM×N with rows A1, ..., AM we define the function

vec : RM×N −→ RM ·N , A 7−→ (A1, ..., AM ) .

Lemma 1.11 ([15, 20])

(i) The set vec
(
RM×N

R

)
is a smooth manifold of codimension

(M −R) · (N −R) in RM ·N .

(ii) The set vec
(
RM×N

R,I,S

)
is a smooth manifold of codimension

(M −R) · (N −R) + S · (M −R+ S − |I|) in RM ·N .

A codimension formula. Let J = {1, ..., p} as well as p0 = |J0(x̄)|.
By Lemma 1.2, for x̄ ∈ M ∩ ∂M the set

⋃
j∈J0(x̄)B

j
00(x̄) is nonempty.

We consider the case in which it contains at least r different elements,
say ȳj,k ∈ Bj

00(x̄), 1 ≤ k ≤ pj , j ∈ J0(x̄), with
∑p0

j=1 pj = r.

As ȳj,k is a maximizer of Qj(x̄) we find a unique number ρj,k ≤ sj,k
0 :=

|Λ0(x̄, ȳj,k)| such that
(

Dycj(x̄, ȳj,k)
DyvΛ0(x̄, ȳ

j,k)

)
∈ R(1+sj,k

0 )×m
ρj,k ,
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and we define the rank defect dj,k = sj,k
0 − ρj,k . Moreover, we have

(
Dycj(x̄, ȳj,k)
DyvΛ0(x̄, ȳ

j,k)

)
∈ R(1+sj,k

0 )×m
ρj,k , Dj,k , σj,k

for several choices of Dj,k and σj,k, where we can always choose Dj,k = ∅
and σj,k = 0.

Furthermore, if x̄ is a local maximizer of DC, Theorem 1.5 guarantees
that for some choice ȳj,k ∈ Bj

00(x̄), 1 ≤ k ≤ pj , j ∈ J0(x̄) with
∑p0

j=1 pj =
r ≤ n+ 1 we also have

(
Df(x̄)

Dxw(x̄, ȳj,k)1≤k≤pj , 1≤j≤p0

)
∈ R(1+r)×n

ρ0 , D0 , σ0

with ρ0 ≤ r. We denote the corresponding rank defect by d0 = r − ρ0 .
Our subsequent analysis bases on the following relation:

0 ≥ d0 + d0(n− r + d0) + σ0(1 + d0 + σ0 − |D0|) (1.7)

+
p0∑

j=1

pj∑

k=1

[
dj,k + dj,k(m− sj,k

0 + dj,k) + σj,k(1 + dj,k + σj,k − |Dj,k|)
]
.

Put Qd = Cd(Rn,R) × Cd(c) × Cd(v) × Cd(Rn × Rm,R), where Cd(c)
and Cd(v) are defined to be the set of vector functions c ∈ Cd(Rm,Rp)
and v ∈ Cd(Rm,Rs) such that C and Y are nonempty and compact,
respectively. Define

Fd = { (f, c, v, w) ∈ Qd| any choice of r elements

from
⋃

j∈J0(x̄)B
j
00(x̄) corresponding to a point

x̄ ∈M ∩ ∂M satisfies relation (1.7) } .

Theorem 1.12 F∞ is C∞s -dense in Q∞.

Proof. For r ∈ N and K := {1, ..., r} consider the reduced multi-jet

j1r (f, c, v, w)(x1, y1, ..., xr, yr) = (xk, yk, Dfk, ck1, ..., c
k
p, Dc

k
1, ..., Dc

k
p,

vk
1 , ..., v

k
s , Dv

k
1 , ..., Dv

k
s , w

k, Dxw
k, Dyw

k, k ∈ K )

with (x1, y1, ..., xr, yr) ∈ Rn+m
r and Dfk = Df(xk), etc. In the following

we call Kj , j ∈ J̃0, a partition of K if
⋃

j∈J̃0
Kj = K and if the sets
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Kj , j ∈ J̃0, are pairwise distinct. For

r ∈ N
J̃0 ⊂ J

Kj , j ∈ J̃0, a partition of K = {1, ..., r}
0 ≤ ρ0 ≤ min(1 + r, n)

D0 ⊂ {0, ..., r}
max(ρ0 + |D0| − 1− r, 0) ≤ σ0 ≤ min(ρ0, |D0|)
Λ̃j,k

0 ⊂ Λ

0 ≤ ρj,k ≤ min(1 + sj,k
0 ,m)

Dj,k ⊂ {0, ..., sj,k
0 }

max(ρj,k + |Dj,k| − 1− sj,k
0 , 0) ≤ σj,k ≤ min(ρj,k, |Dj,k|)

k ∈ Kj , j ∈ J̃0





(1.8)

we define the C∞-manifoldN
r,(Kj ,j∈J̃0),ρ0,D0,σ0, (Λ̃j,k

0 ,ρj,k,Dj,k,σj,k, k∈Kj ,j∈J̃0)

to be the set of points

(x̃k, ỹk, F̃ k, c̃k1, ..., c̃
k
p, C̃

k
1 , ..., C̃

k
p , ṽ

k
1 , ..., ṽ

k
s , Ṽ

k
1 , ..., Ṽ

k
s , w̃

k, X̃k, Ỹ k, k ∈ K )

with the following properties:

dimensions:

(x̃1, ỹ1, ..., x̃r, ỹr) ∈ Rn+m
r ,

c̃kj , j ∈ J, ṽk
` , ` ∈ L, w̃k ∈ R, k ∈ K

F̃ k, X̃k ∈ Rn, k ∈ K
C̃k

j , j ∈ J, Ṽ k
` , ` ∈ L, Ỹ k ∈ Rm, k ∈ K

conditions on the independent variables:

x̃1 = ... = x̃r

conditions on the functional values:

c̃kj = 0, k ∈ Kj , j ∈ J̃0 , ṽk
` = 0, ` ∈ Λ̃j,k

0 , k ∈ Kj , j ∈ J̃0
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conditions on the gradients:

 F̃ 1

(X̃k)k∈Kj , j∈J̃0


 ∈ R(1+r)×n

ρ0 , D0 , σ0
,


 C̃k

j

Ṽ k
Λ̃j,k

0


 ∈ R(1+sj,k

0 )×m
ρj,k , Dj,k , σj,k

, k ∈ Kj , j ∈ J̃0 .

With the help of Lemma 1.11(ii) we can calculate the codimension of
this manifold:

codimN
r,(Kj ,j∈J̃0),ρ0,D0,σ0, (Λ̃j,k

0 ,ρj,k,Dj,k,σj,k, k∈Kj ,j∈J̃0)
=

= (r − 1)n+ r +
∑

j∈J̃0

∑

k∈Kj

sj,k
0

+(1 + r − ρ0)(n− ρ0) + σ0(1 + r − ρ0 + σ0 − |D0|)
+

∑

j∈J̃0

∑

k∈Kj

[
(1 + sj,k

0 − ρj,k)(m− ρj,k)

+σj,k(1 + sj,k
0 − ρj,k + σj,k − |Dj,k|)

]
. (1.9)

Define the set

F? =
∞⋂

r=1

⋂

(Kj ··· J̃0)

>∩1
r Nr,(Kj ,j∈J̃0),ρ0,D0,σ0, (Λ̃j,k

0 ,ρj,k,Dj,k,σj,k, k∈Kj ,j∈J̃0)

where the inner intersection ranges over all possible choices of K1, etc.,
according to (1.8). F? is C∞s -dense in Q∞ by Theorem 1.10. It remains
to be shown that F? ⊂ F∞. Choose a function vector (f, c, v, w) ∈ F? as
well as a local maximizer x̄ ofDC. By Lemma 1.2 the set

⋃
j∈J0(x̄)B

j
00(x̄)

is non-empty. From each nonempty Bj
00(x̄) choose some (pairwise dis-

tinct) ȳj,k, k ∈ Kj , and put Kj = ∅ if Bj
00(x̄) = ∅. Denote the to-

tal number of chosen elements by r and put K = {1, ..., r}. Then
Kj , j ∈ J0(x̄), forms a partition of K, (x̄, ȳ1, ..., x̄, ȳr) ∈ Rn+m

r , and
j1r (f, c, v, w)(x̄, ȳ1, ..., x̄, ȳr) is contained in some set Nr,( ··· J̃0). As the in-
tersection of j1r (f, c, v, w)(Rn+m

r ) with Nr,( ··· J̃0) is transverse, (1.6) yields
r (n+m) ≥ codimNr,( ··· J̃0). Inserting (1.9) now yields (1.7) after a short
calculation. •
Note that the statement of Theorem 1.12 is equivalent to saying that
F∞ is Cd

s -dense in Q∞ for each d ∈ N0. Since the set C∞(RN ,R) is also
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Cd
s -dense in Cd(RN ,R) ([11]), it is no restriction to consider the space

of smooth defining functions Q∞ instead of the space Qd, d ≥ 2.

Corollary 1.13 For (f, c, v, w) ∈ F? let x̄ ∈M ∩∂M be a local maxi-
mizer of DC. Then the set

⋃
j∈J0(x̄)B

j
00(x̄) contains at most n elements

ȳ1, ..., ȳr, and for each 1 ≤ k ≤ r LICQ and SCS hold at ȳk in the
corresponding lower level problem.

Proof. One can easily conclude from the relations in (1.8) that each
factor in the right hand side of (1.7) is nonnegative. Consequently, all
summands have to vanish. In particular we find d0 = dj,k = 0 for all
1 ≤ k ≤ pj , j ∈ J0(x̄). This implies 0 ≤ n − ρ0 = n − r + d0 = n − r
which is the first part of the assertion.

A second consequence is σj,k(1 + σj,k − |Dj,k|) = 0 for all 1 ≤ k ≤ pj ,
j ∈ J0(x̄). Hence, |Dj,k| = 1 implies σj,k = 0. This means that LICQ
and SCS hold at each ȳj,k in Qj(x̄). •
With a tedious evaluation of the tangent space condition (1.5) it is also
possible to show that for (f, c, v, w) ∈ F? and a local maximizer x̄ ∈
M ∩ ∂M of DC at each ȳ ∈ ⋃

j∈J0(x̄)B
j
00(x̄) the second order sufficiency

condition holds. Altogether this means that for (f, c, v, w) ∈ F? the
Reduction Ansatz is valid at each local maximizer of DC.

4. An associated standard semi-infinite problem

The first order necessary optimality condition in Theorem 1.5 has the
typical structure of an optimality condition for some standard semi-
infinite program. In fact, we can construct a certain standard semi-
infinite problem which is strongly related to DC.

For the following arguments we put C≤j = {y ∈ Rm| cj(y) ≤ 0},
C<

j = {y ∈ Rm| cj(y) < 0}, etc. for j ∈ J as well as W≤(x) =
{y ∈ Rm| w(x, y) ≤ 0} etc. The main idea is to rewrite the inclusion
constraint B(x) ⊂ C of DC in an equivalent form like Cc ⊂ B(x)c.

Slightly modified this idea proceeds as follows. By definition we have
B(x) ⊂ C if and only Y ∩W≤(x) ⊂ ⋂

j∈J C
≤
j . The latter is equivalent

to Y ∩W≤(x) ∩⋃
j∈J C

>
j = ∅ and, thus, to

⋃
j∈J

(
Y ∩ C>

j

)
⊂W>(x).
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This means that an equivalent formulation of the constraint B(x) ⊂ C
is given by

w(x, y) > 0 for all y ∈ Y ∩ C>
j , j ∈ J .

Due to the strict inequalities these are not semi-infinite constraints in
the usual sense. We can, however, formulate an associated standard
semi-infinite problem for DC:

SIPDC : max
x

f(x) s.t. w(x, y) ≥ 0 ∀ y ∈ Y ∩ C≥j , j ∈ J .

Note that the index sets Y ∩C≥j , j ∈ J , of the finitely many semi-infinite
constraints are compact, and certainly nonempty if C ⊂ Y . Recall that
we defined the optimal value functions

ϕj(x) = max
y∈Y ∩W≤(x)

cj(y) , j ∈ J ,

and the active index set J0(x) = {j ∈ J | ϕj(x) = 0} for the problem
GSIPDC . For the problem SIPDC we put analogously

ψj(x) = min
y∈Y ∩C≥j

w(x, y) , j ∈ J ,

JSIP
0 (x) = {j ∈ J | ψj(x) = 0}, and Qj

SIP (x), j ∈ J , for the correspond-
ing lower level problems. For j ∈ JSIP

0 (x) the optimal points of Qj
SIP (x)

form the set {y ∈ Y ∩C≥j | w(x, y) = 0} = Y ∩C≥j ∩W=(x) . Fritz John’s
first order optimality condition for standard semi-infinite problems thus
yields the following result.

Proposition 1.14 Let x̄ ∈ ∂MSIP be a local maximizer of SIPDC .
Then there exist pj ∈ N, ȳj,k ∈ Y ∩ C≥j ∩ W=(x), and nontrivial
multipliers κ ≥ 0, µj,k ≥ 0, 1 ≤ k ≤ pj, j ∈ JSIP

0 (x̄), such that∑
j∈JSIP

0 (x̄) pj ≤ n+ 1 and

κ∇f(x̄) +
∑

j∈JSIP
0 (x̄)

pj∑

k=1

µj,k∇xw(x̄, ȳj,k) = 0 .

The resemblance of this result with Theorem 1.5 is obvious. We empha-
size that we relaxed strict to nonstrict inequalities while deriving the
problem SIPDC from DC, so that an identical result for both problems
cannot be expected. More precisely, the feasible sets

M = { x ∈ Rn| ϕj(x) ≤ 0 , j ∈ J } =
⋂

j∈J

Φ≤j
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and

MSIP = { x ∈ Rn| ψj(x) ≥ 0 , j ∈ J } =
⋂

j∈J

Ψ≥
j

do not necessarily coincide. Their relation is clarified by the next results.

Lemma 1.15

(i) For all j ∈ J we have Φ<
j = Ψ>

j .

(ii) For all j ∈ J and x ∈ Φ=
j we have x ∈ Ψ=

j if and only if w(x, ·) is
active in all global solutions of Qj(x).

(iii) For all j ∈ J and x ∈ Ψ=
j we have x ∈ Φ=

j if and only if cj is
active in all global solutions of Qj

SIP (x).

Proof. For all j ∈ J we have x ∈ Φ<
j if and only if Y ∩W≤(x) ⊂ C<

j ,
and we have x ∈ Ψ>

j if and only if Y ∩ C≥j ⊂ W>(x). Since both
characterizations are equivalent to Y ∩ C≥j ∩W≤(x) = ∅, the assertion
of part (i) follows.

From part (i) it is clear that for each j ∈ J the set Φ=
j is necessarily

contained in Ψ≤
j . We have x ∈ Ψ<

j if and only if Y ∩ C≥j ∩W<(x) 6= ∅.
On the other hand, for x ∈ Φ=

j the set Y ∩ C≥j ∩W≤(x) is the set of
global solutions of Qj(x). This shows the assertion of part (ii). The
proof of part (iii) is analogous. •

Theorem 1.16

(i) Let x ∈M and for each j ∈ J0(x) let w(x, ·) be active in all global
solutions of Qj(x). Then we have x ∈MSIP .

(ii) Let x ∈MSIP and for each j ∈ JSIP
0 (x) let cj be active in all global

solutions of Qj
SIP (x). Then we have x ∈M .

Proof. Lemma 1.15. •
Note that under the assumption of Theorem 1.16(ii) the global solution
set Y ∩C≥j ∩W=(x) can be replaced by Y ∩C=

j ∩W=(x) = Bj
00(x), so that

the difference between Theorem 1.5 and Proposition 1.14 disappears.
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5. Final remarks

A main technical assumption for the genericity proof in Section 3 is that
only one of the smooth constraints in the description of B(x) actually
depends on x. There are, of course, design centering problems which
cannot be formulated this way. These problems appear to be as difficult
as the general semi-infinite optimization problem without any additional
structure, so that genericity results for this case can be expected as soon
as the generic validity of the Reduction Ansatz at all solutions of GSIP
has been shown.

Under the Reduction Ansatz, locally around a local solution x̄ the prob-
lem GSIPDC can be rewritten as a smooth problem with finitely many
constraints. We point out that our genericity proof from Section 3 also
shows that for (f, c, v, w) ∈ F? a local maximizer x̄ ∈M ∩ ∂M of DC is
nondegenerate for this locally reduced problem.

The results of the present article for single-body design centering prob-
lems can be transferred to the multi-body case with some additional
technical effort. This and efficient numerical methods for multi-body
design centering will be subject of future research.
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