Amorphous molecular beam epitaxy: global solutions and absorbing sets

O. STEIN 1 and M. WINKLER 2

¹ Department of Mathematics - C, RWTH Aachen University, Germany email: stein@mathC.rwth-aachen.de
² Department of Mathematics - I, RWTH Aachen University, Germany email: winkler@math1.rwth-aachen.de

The parabolic equation

$$u_t + u_{xxxx} + u_{xx} = -(|u_x|^{\alpha})_{xx}, \qquad \alpha > 1$$

is studied under the boundary conditions $u_x|_{\partial\Omega} = u_{xxx}|_{\partial\Omega} = 0$ in a bounded real interval Ω . Solutions from two different regularity classes are considered: It is shown that unique *mild* solutions exist locally in time for any $\alpha > 1$ and initial data $u_0 \in W^{1,q}(\Omega)$ $(q > \alpha)$, and that they are global if $\alpha \leq \frac{5}{3}$. Furthermore, from a semidiscrete approximation scheme global *weak* solutions are constructed for $\alpha < \frac{10}{3}$, and for suitably transforms of such solutions the existence of a bounded absorbing set in $L^1(\Omega)$ is proved for $\alpha \in [2, \frac{10}{3})$. The article closes with some illustrative numerical examples.

MSC 2000: 35K55, 35B40, 65M60.