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Abstract

We study the smoothing method for the solution of generalized semi-infinite optimiza-

tion problems from (O. Stein, G. Still: Solving semi-infinite optimization problems with

interior point techniques, SIAM J. Control Optim., 42(2003), pp. 769–788). It is shown

that Karush-Kuhn-Tucker points of the smoothed problems do not necessarily converge to

a Karush-Kuhn-Tucker point of the original problem, as could be expected from results

in (F. Facchinei, H. Jiang, L. Qi: A smoothing method for mathematical programs with

equilibrium constraints, Math. Program., 85(1999), pp. 107–134). Instead, they might

merely converge to a Fritz John point. We give, however, different additional assumptions

which guarantee convergence to Karush-Kuhn-Tucker points.
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1. Introduction

This article studies a numerical solution method for so-called generalized semi-infinite opti-

mization problems. These problems have the form

GSIP : minimize f(x) subject to x ∈M

with

M = { x ∈ R
n| gi(x, y) ≤ 0 for all y ∈ Y (x), i ∈ I }

and

Y (x) = { y ∈ R
m| vℓ(x, y) ≤ 0, ℓ ∈ L }.

All defining functions f, gi , i ∈ I = {1, ..., p}, vℓ , ℓ ∈ L = {1, ..., s}, are assumed to be real-

valued and d times continuously differentiable on their respective domains with d ≥ 2. The

inclusion of equality constraints in the definitions of M and Y (x) as well as of i−dependent

index sets Y (x) is straightforward and will not be considered here for the ease of presentation.

As opposed to a standard semi-infinite optimization problem SIP, the possibly infinite index

set Y (x) of inequality constraints is x-dependent in a GSIP. For surveys about standard semi-

infinite optimization we refer to [6, 8, 17, 18], whereas the state of the art in generalized semi-

infinite optimization is covered in [26, 27, 28] and in the monography [24]. The latter also

contains a wide range of applications and the historical background of generalized semi-infinite

programming.

* Received November 19, 2005.
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A numerical solution method for a subclass of these problems was presented in [26]. It

bases on a smoothing method which is also known from [2] for mathematical programs with

complementarity constraints and which is essentially an interior point approach for a degenerate

part of the problem. Section 2 explains the main features of this method.

In [26] we have shown that under weak assumptions global solutions of the smoothed prob-

lems converge to a global solution of GSIP, and that stationary points in the sense of Fritz John

converge to a Fritz John point of GSIP. From the results in [2] it could be expected that without

further assumptions even Karush-Kuhn-Tucker points of the smoothed problems converge to a

Karush-Kuhn-Tucker point of GSIP.

The aim of the present article is to show that in the setting of GSIP this is actually not the

case. We give, however, different additional assumptions which guarantee the convergence to a

Karush-Kuhn-Tucker point. These are the contents of Sections 3 and 4.

2. Preliminaries

This section reviews the main ideas of the smoothing method from [26].

2.1. The Reduction Ansatz for convex lower level problems

The n-parametric so-called lower level problems of GSIP are given by

Qi(x) : max
y∈Rm
imize gi(x, y) subject to y ∈ Y (x)

with i ∈ I. Note that the upper level decision variable x is a parameter of the lower problem,

and that the upper level index variable y is the decision variable of the lower level. For each

parameter value x we can study the optimal value and the optimal points of the optimization

problem Qi(x). More precisely, associated with Qi(x) are its optimal value function

ϕi(x) =







sup
y∈Y (x)

gi(x, y), if Y (x) 6= ∅

−∞, else,

and, in case of solvability, its solution set mapping

Y i
⋆ (x) = {y ∈ Y (x)| gi(x, y) = ϕi(x)}.

It is easily seen that M and the set {x ∈ R
n| ϕi(x) ≤ 0, i ∈ I} coincide.

Assumption 2.1. For all x ∈ R
n the lower level problems Qi(x), i ∈ I, are convex, that is,

the functions −gi(x, ·), vℓ(x, ·), ℓ ∈ L, are convex on R
m.

Assumption 2.2. For all x ∈ R
n the sets Y (x) are bounded and satisfy the Slater condition,

that is, there exists some y⋆ such that vℓ(x, y
⋆) < 0 for all ℓ ∈ L.

Under Assumptions 2.1 and 2.2 the sets Y i
⋆ (x) are nonempty and locally bounded around

each x̄ ∈ R
n ([10]), so that the optimal value functions ϕi(x) = maxy∈Y (x) gi(x, y), i ∈ I,

are well-defined and continuous on R
n ([10]). In particular the feasible set M is closed.

For the derivation of stationarity conditions we concentrate on the nontrivial case of a point

x̄ from the boundary ∂M of M . Let I0(x̄) = {i ∈ I| ϕi(x̄) = 0} denote the set of active indices
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at x̄. Since for i ∈ I0(x̄) the problem Qi(x̄) has vanishing optimal value, the set of its solution

points can be described as

Y i
⋆ (x̄) = Y i

0 (x̄) := {y ∈ Y (x̄)| gi(x̄, y) = 0},

and we have i ∈ I0(x̄) if and only if Y i
0 (x̄) 6= ∅.

Next, we give a local description of M by finitely many smooth constraints for the case when

certain regularity assumptions hold in the lower level problems. Let v be the column vector

of the functions vℓ , ℓ ∈ L = {1, ..., s}, let diag(γ) stand for the (s, s)−diagonal matrix with

diagonal vector γ ∈ R
s, and let i ∈ I0(x̄). Since each ȳ ∈ Y i

0 (x̄) is a solution of Qi(x̄), and since

the Slater condition (Assumption 2.2) holds in Y (x̄), with the lower level Lagrange function

Li(x, y, γ) = gi(x, y) − γ⊤v(x, y)

the Karush-Kuhn-Tucker theorem states that the following system of equalities and inequalities

has a solution γ̄ :

∇yLi(x̄, ȳ, γ) = 0 (2.1)

−diag(γ) v(x̄, ȳ) = 0 (2.2)

−γ ≤ 0 (2.3)

v(x̄, ȳ) ≤ 0. (2.4)

The Linear Independence Constraint Qualification (LICQ) is said to hold at ȳ ∈ Y (x̄) if

the family of vectors ∇yvℓ(x̄, ȳ), ℓ ∈ L0(x̄, ȳ), is linearly independent. Here L0(x̄, ȳ) = {ℓ ∈

L| vℓ(x̄, ȳ) = 0} denotes the set of lower level active indices, and ∇yvℓ stands for the column

vector of partial derivatives of vℓ with respect to y. For brevity we will denote its transpose

∇⊤
y vℓ (i.e., the Jacobian of v with respect to y) by Dyvℓ . LICQ at ȳ implies Assumption 2.2

as well as uniqueness of the multiplier γ̄.

The point ȳ is said to satisfy the Strict Complementary Slackness (SCS) condition, if

γ̄ℓ > 0, ℓ ∈ L0(x̄, ȳ). Under LICQ the tangent space to Y (x̄) at ȳ can be described as

TȳY (x̄) = {η ∈ R
m| Dyvℓ(x̄, ȳ) η = 0, ℓ ∈ L0(x̄, ȳ)}. The point ȳ is said to satisfy the Second

Order Sufficiency Condition (SOSC) if the matrix D2
yLi(x̄, ȳ, γ̄)|TȳY (x̄) possesses only negative

eigenvalues. Here, D2
yLi = Dy∇yLi denotes the Hessian matrix of Li with respect to y, and

we have D2
yLi(x̄, ȳ, γ̄)|TȳY (x̄) = V ⊤D2

yLi(x̄, ȳ, γ̄)V for any matrix V of m−vectors which form

a basis of the tangent space TȳY (x̄). The Jacobian of (2.1), (2.2) with respect to (y, γ),

Ai(x, y, γ) := D(y,γ)

(

∇yLi(x, y, γ)

−diag(γ)v(x, y)

)

=

(

D2
yLi(x, y, γ) −∇yv(x, y)

−diag(γ)Dyv(x, y) −diag(v(x, y))

)

, (2.5)

will play an important role throughout this paper.

Definition 2.1. Let x̄ ∈ ∂M and i ∈ I0(x̄). A point ȳ ∈ Y i
0 (x̄) is called nondegenerate global

maximizer of Qi(x̄) if LICQ holds at ȳ and if SCS and SOSC are valid with the vector γ̄

satisfying (2.1) – (2.4).
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Lemma 2.1 (cf., e.g., [24]) Let Assumptions 2.1 and 2.2 be satisfied and let x̄ ∈ R
n as

well as i ∈ I. Then a point ȳi is a nondegenerate global maximizer of Qi(x̄) with corresponding

multiplier vector γ̄i if and only if (2.1) – (2.4) hold and if the Jacobian Ai(x, y, γ) is nonsingular

at (x̄, ȳi, γ̄i).

Weak sufficient conditions for the nonsingularity of the matrices Ai(x̄, ȳi, γ̄i), i ∈ I, are

given in [24].

Assumption 2.3 (Reduction Ansatz, cf. [7, 9, 29]) For each i ∈ I0(x̄) all global maxi-

mizers of Qi(x̄) are nondegenerate.

Under Assumptions 2.1 and 2.3 the global maximizers of Qi(x̄) are uniquely determined,

that is, the sets Y i
0 (x̄) = {ȳi}, i ∈ I0(x̄), are singletons.

An application of the implicit function theorem ([3]) shows that for each ȳi with correspond-

ing multiplier vector γ̄i there are Cd−1−functions yi and γi, defined on a neighborhood U i of

x̄, such that (yi(x̄), γi(x̄)) = (ȳi, γ̄i) and such that yi(x) is the locally unique local maximizer

of Qi(x) with multiplier γi(x). Hence, we may introduce the locally defined optimal value

functions

ϕi : U i → R, x 7→ gi(x, y
i(x)), i ∈ I0(x̄).

Lemma 2.2 (cf., e.g., [12]) The functions ϕi are of differentiability class Cd, and their gra-

dients satisfy

∇ϕi(x̄) = ∇xLi(x̄, ȳ
i, γ̄i).

Theorem 2.1 (Reduction Lemma, cf. [9, 23]) Let Assumption 2.1 hold, let Assumption 2.3

be satisfied at x̄, and put U :=
⋂

i∈I0(x̄) U
i. Then the sets M and

Mx̄ = { x ∈ U | ϕi(x) ≤ 0, i ∈ I0(x̄) }

coincide locally around x̄.

Theorem 2.1 shows that under the Reduction Ansatz the original problem GSIP is locally

equivalent to the reduced problem min f |Mx̄
. Hence, local optimality conditions from finite

optimization may be applied to yield results for the semi-infinite case.

For example, in view of Lemma 2.2 the Mangasarian-Fromovitz Constraint Qualification

(MFCQ) is said to hold at x̄ in Mx̄ if there exists some vector d ∈ R
m such that

0 > Dϕi(x̄) d = DxLi(x̄, ȳ
i, γ̄i) d, i ∈ I0(x̄).

Moreover, we obtain Fritz John type and Karush-Kuhn-Tucker type first order necessary opti-

mality conditions ([11, 16]):

Theorem 2.2.

(i) Let Assumption 2.1 hold and let Assumption 2.3 be satisfied at a local minimizer x̄ of

GSIP. Then there exist multipliers κ ≥ 0, λi ≥ 0, i ∈ I0(x̄), not all equal to zero, such

that

κ∇f(x̄) +
∑

i∈I0(x̄)

λi ∇xLi(x̄, ȳ
i, γ̄i) = 0. (2.6)
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(ii) If, in addition to the assumptions of part a), MFCQ holds at x̄, then in (2.6) one can

choose κ = 1.

2.2. The numerical approach

Our numerical method replaces GSIP by a sequence of finite nonlinear programming prob-

lems which are numerically tractable and whose solutions or stationary points converge to a

solution or a stationary point of GSIP, respectively. Unlike other numerical methods for semi-

infinite programming, this approach does not discretize the index set Y (x), but it takes advan-

tage of the fact that the solution set of a regular convex lower level problem is characterized by

its first order optimality condition.

Let us first recall that a function ψ : R
2 → R with

ψ(a, b) = 0 if and only if a ≥ 0, b ≥ 0, ab = 0

is called NCP function. Examples are the min-function, or natural residual function,

ψNR(a, b) = 1
2

(

a+ b −
√

(a− b)2
)

,

and the Fischer-Burmeister function ([4])

ψFB(a, b) = a+ b−
√

a2 + b2.

For numerical purposes one can regularize these nondifferentiable NCP functions. The so-

called Chen-Harker-Kanzow-Smale function ([1, 14, 22]) is given by

ψNR
τ (a, b) = 1

2

(

a+ b−
√

(a− b)2 + 4τ2
)

,

whereas the so-called smoothed Fischer-Burmeister function is

ψFB
τ (a, b) = a+ b−

√

a2 + b2 + 2τ2.

Obviously ψNR
τ and ψFB

τ are continuously differentiable for all τ 6= 0, and for τ = 0 they coincide

with ψNR and ψFB, respectively. Moreover, both functions share the following important

properties:

Lemma 2.3 ([14, 26]) Let τ 6= 0 and let ψτ denote one of the functions ψNR
τ and ψFB

τ . Then

the following assertions hold:

(i) We have ψτ (a, b) = 0 if and only if a > 0, b > 0, ab = τ2 .

(ii) At (a, b) with ψτ (a, b) = 0 we have Dψτ (a, b) = (a + b)−1 (b, a). In particular, at a zero

of ψτ the gradient of ψτ does not explicitly depend on τ .

In the sequel we mainly need the results of Lemma 2.3, so that we will not distinguish

between ψNR
τ and ψFB

τ but simply write ψτ .

Our numerical approach bases on the observation from [25] that GSIP and the Stackelberg

game ([21])

SG : min
x,y1,...,yp

f(x) s.t. gi(x, y
i) ≤ 0, and yi solves Qi(x), i ∈ I,
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are equivalent problems whenever the index set Y (x) is nonempty for all x ∈ R
n. The latter is

the case under Assumption 2.2.

Under Assumption 2.1 the restrictions “yi solves Qi(x)” in SG can be equivalently replaced

by their first order optimality conditions: for each i ∈ I there is a solution γi of (2.1) – (2.4).

The latter statement is true under Assumption 2.2, since Slater’s condition guarantees the

existence of Karush-Kuhn-Tucker multipliers. By this reformulation, SG is equivalent to the

following mathematical program with complementarity constraints, where diag(γ) denotes the

(s, s)−diagonal matrix with diagonal vector γ ∈ R
s:

MPCC : min
x,y1,γ1...,yp,γp

f(x) s.t. gi(x, y
i) ≤ 0

∇yLi(x, y
i, γi) = 0

−diag(γi) v(x, yi) = 0

−γi ≤ 0

v(x, yi) ≤ 0, i ∈ I.

Unfortunately, numerical standard software cannot be expected to solve this problem since

due to the appearance of complementarity conditions MFCQ is violated at all points of the

feasible set of MPCC ([20]). In [13, 19] it is shown that MFCQ is a necessary condition for the

stability of smooth nonlinear programs under data perturbations and thus for the stability of

numerical methods in the presence of round-off errors.

Given an NCP function ψ and a, b ∈ R
s we define the vectorization

Ψ(a, b) = (ψ(a1 , b1), ..., ψ(as , bs))
⊤,

so that MPCC can be equivalently rewritten as the nonsmooth problem

P : min
x,y1,γ1...,yp,γp

f(x) s.t. gi(x, y
i) ≤ 0

∇yLi(x, y
i, γi) = 0

Ψ(γi,−v(x, yi)) = 0, i ∈ I.

To smooth P we take an interior point approach for the lower level problems Qi(x), i ∈ I.

In fact, for each i ∈ I we replace the Karush-Kuhn-Tucker system (2.1) – (2.4) for (yi, γi) by

the perturbed system

∇yLi(x, y
i, γi) = 0 (2.7)

−diag(γi) v(x, yi) = τ2 es (2.8)

−γi ≤ 0 (2.9)

v(x, yi) ≤ 0 (2.10)

depending on τ ∈ R (and on x). Here we set es = (1, ..., 1)⊤ ∈ R
s. Note that for τ 6= 0, under

(2.8) the nonstrict inequalities (2.9), (2.10) are equivalent to their strict analogs. In view of

Lemma 2.3(i), with one of the regularized NCP functions Ψτ in vector form, the problem P is

thus embedded into the parameterized family of optimization problems

Pτ : min
x,y1,γ1...,yp,γp

f(x) s.t. gi(x, y
i) ≤ 0

∇yLi(x, y
i, γi) = 0 (2.11)

Ψτ (γi,−v(x, yi)) = 0, i ∈ I (2.12)
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with P0 = P .

Note that the Jacobian of (2.7), (2.8) with respect to (yi, γi) does not depend on τ and is

given by Ai(x, yi, γi) from (2.5). Furthermore, by Lemma 2.3(ii) the Jacobian of (2.11), (2.12)

with respect to (yi, γi) at a point (x, yi, γi) satisfying (2.11), (2.12) with τ 6= 0 is

D(yi,γi)

(

∇yLi(x, y
i, γi)

Ψτ (γi,−v(x, yi))

)

=

(

Id 0

0 diag(γi − v(x, yi))−1

)

· Ai(x, yi, γi) (2.13)

where Id denotes the (m,m)−identity matrix, and where diag(γi−v(x, yi)) is nonsingular since

all its diagonal entries are positive in view of (2.12) and Lemma 2.3(i). The Jacobian in (2.13)

does not explicitly depend on τ , and it is nonsingular if and only if Ai(x, yi, γi) is.

The Jacobian of (2.11), (2.12) with respect to the complete variable vector (x, y1, γ1, ..., yp, γp)

at a feasible point of Pτ thus does not explicitly depend on τ neither and can be written as

D

(

∇yLi(x, y
i, γi)

Ψτ (γi,−v(x, yi))

)

=

(

Id 0

0 diag(γi − v(x, yi))−1

)

·

((

Dx∇yLi(x, y
i, γi)

−diag(γi)Dxv(x, y
i)

)

, 0, ..., 0, Ai(x, yi, γi), 0, ..., 0

)

. (2.14)

The following proposition shows that for τ 6= 0 problem Pτ is numerically tractable in the

sense that the inherent singularity in the equality constraints of problem P is removed.

Proposition 2.1 ([24]) Let τ 6= 0 and let (x, y1, γ1, ..., yp, γp) be a feasible point of Pτ such

that for each i ∈ I the matrix Ai(x, yi, γi) is nonsingular. Then the gradients of the equality

constraints of Pτ are linearly independent at (x, y1, γ1, ..., yp, γp).

Proof. The assertion immediately follows from (2.14) and the block structure of the matrix

D

















∇yL1(x, y
1, γ1)

Ψτ (γ1,−v(x, y1))
...

∇yLp(x, y
p, γp)

Ψτ (γp,−v(x, yp))

















.

The ideas presented so far lead to the following continuation method ([26]):

Numerical method

Step 1: Choose a sequence {τν} of nonzero reals with limν→∞ τν = 0, a starting point x0 ∈ R
n,

and a termination criterion.

Step 2: Compute a starting point (x0,0, y1,0,0, γ1,0,0, ..., yp,0,0, γp,0,0) for the solution of Pτ0
and

set ν = 0 .

Step 3: Starting from (xν,0, y1,ν,0, ..., γp,ν,0), find a solution (xν,⋆, y1,ν,⋆, ..., γp,ν,⋆) of Pτν
.

Step 4: If the termination criterion is violated at (xν,⋆, y1,ν,⋆, ..., γp,ν,⋆), set (xν+1,0, y1,ν+1,0, ...,

γp,ν+1,0) = (xν,⋆, y1,ν,⋆, ..., γp,ν,⋆), ν := ν + 1, and go to Step 3.
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We emphasize that this method only takes advantage of specially structured lower level

problems to reduce the numerical computation of a solution for GSIP to the solution of a

sequence of finite optimization problems. On the other hand, the latter nonlinear finite problems

are not assumed to possess any special properties, so that a starting point x0 has to be chosen

in advance.

In step 2 we clearly choose x0,0 = x0 as the starting point for iteration ν = 0. In order to

obtain the corresponding starting values (y1,0,0, ..., γp,0,0) numerically, one might try to find a

zero of
(

∇yLi(x
0, yi, γi)

Ψτ0
(γi,−v(x0, yi))

)

for each i ∈ I. A better method is given in [24].

Step 3 is a “black box” which stands for any standard solution method for nonlinear finite

optimization problems. To use our solution approach, a user thus only has to construct the

auxiliary problems Pτ for several values of τ , and solve those with his favorite NLP software.

Termination criteria might be the relative error of optimal points or of optimal values, as

well as the error in the first order optimality condition for GSIP, and combinations thereof. We

point out that the availability of a first order optimality condition is crucial for the numerical

performance of the method. In contrast to this, an analogous approach for the solution of

general classes of MPCC s suffers from the drawback that good termination criteria are difficult

to check numerically ([2], [15], [20]).

For implementation issues, numerical results and further details about this method we refer

to [24, 26].

2.3. Convergence results

As shown in [26], the smoothing approach embeds GSIP into the family of problems

GSIPτ : min
x

f(x) s.t. x ∈MGSIPτ

with MGSIPτ
= prx (MPτ

), the orthogonal projection of M(Pτ ) to R
n. We denote the unfolded

feasible set of MGSIPτ
by

MGSIP = { (x, τ) ∈ R
n × R| x ∈MGSIPτ

}.

Now let Assumption 2.1 hold, let Assumption 2.3 be satisfied at some point x̄ ∈ MGSIP ,

and let ȳi denote the unique solution of Qi(x̄) with unique multiplier vector γ̄i for i ∈ I0(x̄).

Then for each i ∈ I0(x̄) the point

(x, yi, γi, τ) = (x̄, ȳi, γ̄i, 0) solves (2.7), (2.8), and the Jacobian with respect to (yi, γi) of the

latter system of equations, Ai(x̄, ȳi, γ̄i), is nonsingular. Thus, the implicit function theorem can

be applied to obtain locally unique Cd−1−functions (yi(x, τ), γi(x, τ)) with (yi(x̄, 0), γi(x̄, 0)) =

(ȳi, γ̄i), i ∈ I0(x̄), such that the points (x, yi(x, τ), γi(x, τ), τ) solve (2.7), (2.8) for all (x, τ) in

some neighborhood U i of (x̄, 0).

Due to Assumption 2.3 in particular the strict complementary slackness condition is satisfied,

so that for all i ∈ I0(x̄) we have vℓ(x̄, ȳ
i) < 0, ℓ ∈ Lc

0(x̄, ȳ
i), and γ̄i

ℓ > 0, ℓ ∈ L0(x̄, ȳ
i).

By continuity also vℓ(x, y
i(x, τ)) < 0, ℓ ∈ Lc

0(x̄, ȳ
i), and γi

ℓ(x, τ) > 0, ℓ ∈ L0(x̄, ȳ
i), hold

for all (x, τ) ∈ U i and for sufficiently small U i. In view of (2.8) and τ2 > 0 this implies

γi
ℓ(x, τ) > 0, ℓ ∈ Lc

0(x̄, ȳ
i), and vℓ(x, y

i(x, τ)) < 0, ℓ ∈ L0(x̄, ȳ
i), on U i. The implicit functions

yi(x, τ) and γi(x, τ) thus also satisfy (2.9), (2.10), even strictly. Because of Lemma 2.3(i) the

latter means that the same implicit functions are the locally unique solutions of (2.11), (2.12).
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Using the implicitly defined functions yi, i ∈ I0(x̄), we introduce the following subset of the

unfolding space R
n × R in the neighborhood U :=

⋂

i∈I0(x̄) U
i of (x̄, 0):

M(x̄,0) = { (x, τ) ∈ U| gi(x, y
i(x, τ)) ≤ 0, i ∈ I0(x̄) }.

Lemma 2.4 (Parametric Reduction Lemma, cf. [26])

Let Assumption 2.1 hold and let Assumption 2.3 be satisfied at some point x̄ ∈ MGSIP . Then

the sets MGSIP and M(x̄,0) coincide locally around (x̄, 0).

In particular, for fixed τ close to 0 locally around x̄ the finite optimization problem

(GSIPx̄)τ : min
x

f(x) s.t. gi(x, y
i(x, τ)) ≤ 0, i ∈ I0(x̄),

is equivalent to GSIPτ . Choosing τ = 0 we see that the Parametric Reduction Lemma implies

Theorem 2.1, that is, x̄ is a local solution of GSIP if and only if x̄ solves

(GSIPx̄)0 : min
x

f(x) s.t. gi(x, y
i(x, 0)) ≤ 0, i ∈ I0(x̄).

Lemma 2.4 is the main tool to prove the following convergence results.

Theorem 2.3 ([26]) Let Assumption 2.1 hold, let (τν)ν∈N be a sequence with limν→∞ τν = 0,

and let (xν , y1,ν , γ1,ν..., yp,ν , γp,ν)ν∈N be a sequence of global solutions of Pτν
, ν ∈ N. If x⋆ is

an accumulation point of the sequence (xν)ν∈N such that Assumption 2.3 holds at x⋆ and such

that MFCQ holds at some solution of GSIP0(x
∗), then x⋆ is a global solution of GSIP.

Theorem 2.3 is primarily of theoretical interest as numerical standard software may not find

global solution points of the problems Pτν
, ν ∈ N. One can at most expect a point which

satisfies some stationarity condition. Consequently a numerical solution method for GSIP can

also merely be expected to find stationary points in the sense of Theorem 2.2. For stationarity

in the sense of Fritz John such a result is known:

Theorem 2.4 ([26]) Let Assumption 2.1 hold, let (τν)ν∈N be a sequence with limν→∞ τν = 0,

and let (xν , y1,ν , γ1,ν ..., yp,ν , γp,ν) be Fritz John points of Pτν
, ν ∈ N, with an accumulation point

(x⋆, y1,⋆, γ1,⋆..., yp,⋆, γp,⋆). Let Assumption 2.3 hold at x⋆, and let the matrices Ai(x⋆, yi,⋆, γi,⋆),

i ∈ I \ I0(x⋆), be nonsingular. Then x⋆ is a Fritz John point of GSIP.

Weak sufficient conditions for the existence of accumulation points in the assumption of

Theorem 2.4 are given in [24].

Comparing these convergence results to those from [2] for MPCCs, it seems that it should

be possible to prove a stronger result, namely that without further assumptions Karush-Kuhn-

Tucker points of Pτν
converge to a Karush-Kuhn-Tucker point of GSIP. This is, however, not

the case as we will see next.

3. Convergence of Karush-Kuhn-Tucker Points

In the following example Karush-Kuhn-Tucker points of the problems Pτ converge to a Fritz

John point of GSIP which is not a Karush-Kuhn-Tucker point.
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Example 3.1. Let n = m = 1 and put f(x) = x, g(x, y) = x2 + y, v1(y) = y, v2(y) = −1 − y.

Then Y = [−1, 0] is a compact set and we obtain ϕ(x) = maxy∈Y g(x, y) = x2. It follows that

MGSIP = { x ∈ R| ϕ(x) ≤ 0 } = {0}

so that the only feasible point is x̄ = 0. Its active index set is

Y0(0) = { y ∈ Y | g(0, y) = 0 } = {0},

and ȳ = 0 is a nondegenerate global maximizer of the convex lower level problem

Q(0) : max y s.t. − 1 ≤ y ≤ 0.

Thus the Reduction Ansatz (Assumption 2.3) holds at x̄ = 0, and the corresponding implicit

function for the solution point is y(x) ≡ 0. This leads to ϕ(x) = g(x, y(x)) = x2 and Mx̄ =

{x ∈ R| x2 ≤ 0}, so that x̄ = 0 is a Fritz John point of f |Mx̄
, but not a Karush-Kuhn-Tucker

point.

On the other hand, for τ ∈ R the smoothed problem Pτ becomes

min
x,y,γ1,γ2

x s.t. x2 + y ≤ 0

1 − γ1 + γ2 = 0

ψτ (γ1 , −y) = 0

ψτ (γ2 , 1 + y) = 0

where ψτ denotes one of the smoothed NCP functions ψNR
τ , ψFB

τ . It is not hard to see that for

a feasible point (x, y, γ1, γ2) we necessarily have

y = −τ2 − 1
2 +

√

τ4 + 1
4

which is negative for τ 6= 0. Pτ is then equivalent to the problem

min
x

x s.t. x2 ≤ τ2 + 1
2 −

√

τ4 + 1
4

with the solution x(τ) = −

√

τ2 + 1
2 −

√

τ4 + 1
4 which is obviously a Karush-Kuhn-Tucker point.

However, the limit x̄ = 0 = limτ→0 x(τ) is not a Karush-Kuhn-Tucker point of GSIP, but only

a Fritz John point.

Example 3.1 shows that without further assumptions Karush-Kuhn-Tucker points of the

smoothed problems do not necessarily converge to a Karush-Kuhn-Tucker point of GSIP. In

the following we will give such further assumptions.

Lemma 3.1. Let Assumption 2.1 hold, let Assumption 2.3 be satisfied at a point x̄ ∈MGSIP ,

and let (x, y1, γ1, ..., yp, γp) be a Karush-Kuhn-Tucker point of Pτ with (x, τ) sufficiently close

to (x̄, 0). Moreover, let the matrices Ai(x̄, ȳi, γ̄i), i ∈ I \ I0(x̄), be nonsingular. Then x is a

Karush-Kuhn-Tucker point of (GSIPx̄)τ .

Proof. The feasibility of (x, y1, γ1, ..., yp, γp) for Pτ and Lemma 2.3(i) imply particularly

that (2.7) and (2.8) hold. Since the matrices Ai(x, yi, γi) are nonsingular for i ∈ I0(x̄) by
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the Reduction Ansatz and continuity, and also for i 6∈ I0(x̄) by the additional assumption of

this lemma, for (x, τ) sufficiently close to (x̄, 0) the point yi coincides with the unique solution

yi(x, τ) from the application of the implicit function theorem to (2.7), (2.8) for each i ∈ I. By

Lemma 2.4 x is thus feasible for (GSIPx̄)τ .

In view of

D gi(x, y
i) = (Dxgi(x, y

i), 0, ...0, Dygi(x, y
i), 0, ..., 0)

and (2.14) the Karush-Kuhn-Tucker condition for Pτ at (x, y1, γ1..., yp, γp) states that there

exist multipliers λi ≥ 0, i ∈ I, ̺1, ..., ̺p ∈ R
m, and σ1, ..., σp ∈ R

s with

0 = Df(x) +
∑

i∈I

λi Dxgi(x, y
i)

+
∑

i∈I

((̺i)⊤, (σ̃i)⊤)

(

Dx∇yLi(x, y
i, γi)

−diag(γi)Dxv(x, y
i)

)

(3.1)

0 = λi (Dygi(x, y
i), 0 ) + ((̺i)⊤, (σ̃i)⊤)Ai(x, yi, γi), i ∈ I (3.2)

0 = λi · gi(x, y
i), i ∈ I, (3.3)

where

σ̃i = diag(γi − v(x, yi))−1σi, i ∈ I.

Because of yi = yi(x, τ), the equations (3.3) become

0 = λi · gi(x, y
i(x, τ)), i ∈ I. (3.4)

Once again by the feasibility of (x, y1, γ1, ..., yp, γp) for Pτ and a simple continuity argument

we obtain gi(x, y
i) = gi(x, y

i(x, τ)) < 0 for i 6∈ I0(x̄) and (x, τ) sufficiently close to (x̄, 0). Hence,

(3.4) implies

λi = 0, i 6∈ I0(x̄). (3.5)

Together with the nonsingularity of the matrices Ai(x, yi, γi), i 6∈ I0(x̄), and with (3.2), this

yields

((̺i)⊤, (σ̃i)⊤) = 0, i 6∈ I0(x̄). (3.6)

Next, (3.5), (3.6), and the nonsingularity of the matrices Ai(x, yi, γi), i ∈ I0(x̄), allow us to

reduce (3.1), (3.2) to

0 = Df(x) +
∑

i∈I0(x̄)

λi Dxgi(x, y
i) (3.7)

−
∑

i∈I0(x̄)

λi (Dygi(x, y
i), 0 )(Ai(x, yi, γi))−1

(

Dx∇yLi(x, y
i, γi)

−diag(γi)Dxv(x, y
i)

)

.

Plugging the implicit functions yi(x, τ) and γi(x, τ) into (2.7), (2.8) and differentiating the

resulting constant function with respect to x yields the equation

Ai(x, yi, γi)

(

Dxy
i(x, τ)

Dxγ
i(x, τ)

)

= −

(

Dx∇yLi(x, y
i, γi)

−diag(γi)Dxv(x, y
i)

)
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for all (x, τ) in a neighborhood of (x̄, 0). Consequently (3.7) can be further reduced to

0 = Df(x) +
∑

i∈I0(x̄)

λi (Dxgi(x, y
i) +Dygi(x, y

i)Dxy
i(x, τ)) (3.8)

= Df(x) +
∑

i∈I0(x̄)

λi Dx[ gi(x, y
i(x, τ)) ].

This proves that x satisfies the desired Karush-Kuhn-Tucker condition for (GSIPx̄)τ .

We remark that Lemma 3.1 can be reversed: under the given nondegeneracy assumptions,

for a Karush-Kuhn-Tucker point x of (GSIPx̄)τ with (x, τ) sufficiently close to (x̄, 0), the point

(x, y1(x, τ), γ1(x, τ), ..., yp(x, τ), γp(x, τ)) is a Karush-Kuhn-Tucker point of Pτ . Its feasibility

is obtained via Lemma 2.4, and the appropriate definitions of multipliers immediately follow

from the proof of Lemma 3.1.

Theorem 3.1. Let Assumption 2.1 hold, let (τν)ν∈N be a sequence with limν→∞ τν = 0, and

let (xν , y1,ν , γ1,ν ..., yp,ν , γp,ν) be Karush-Kuhn-Tucker points of Pτν
, ν ∈ N, with multipli-

ers λν
i ≥ 0, i ∈ I, ̺1,ν , ..., ̺p,ν ∈ R

m, σ1,ν , ..., σp,ν ∈ R
s, and with an accumulation point

(x⋆, y1,⋆, γ1,⋆..., yp,⋆, γp,⋆). Let Assumption 2.3 hold at x⋆, let the matrices Ai(x⋆, yi,⋆, γi,⋆),

i ∈ I \ I0(x⋆), be nonsingular, and let the sequence (λν
i )ν be bounded for each i ∈ I. Then x⋆ is

a Karush-Kuhn-Tucker point of GSIP.

Proof. For sufficiently large ν ∈ N all assumptions of Lemma 3.1 are satisfied, so that xν is

a Karush-Kuhn-Tucker point of (GSIPx⋆)τν
satisfying

0 = Df(xν) +
∑

i∈I0(x̄)

λν
i Dx[ gi(x

ν , yi(xν , τν)) ]. (3.9)

Since for all i ∈ I the sequence of multipliers (λν
i )ν is bounded, it converges without loss of

generality to some λ⋆
i ≥ 0. By the continuity of the appearing functions we can let ν tend to

infinity in (3.9) and obtain

0 = Df(x⋆) +
∑

i∈I0(x̄)

λ⋆
i Dx[ gi(x

⋆, yi(x⋆, 0)) ].

Due to Lemma 2.2 x⋆ is thus a Karush-Kuhn-Tucker point for GSIP in the sense of Theo-

rem 2.2(ii).

4. Final Remarks

With the same techniques as in Section 3 it is easy to show that under the Reduction

Ansatz at x̄ ∈MGSIP the MFCQ holds at a feasible point (x, y1, γ1, ..., yp, γp) of Pτ with (x, τ)

sufficiently close to (x̄, 0) if and only if MFCQ holds at x in the feasible set of (GSIPx̄)τ . Since

MFCQ is stable under small perturbations, assuming MFCQ at x̄ ∈ MGSIP thus guarantees

MFCQ at (x, y1, γ1, ..., yp, γp) for (x, τ) sufficiently close to (x̄, 0). The stationary points of the

smoothed problems as well as of the original problem can then only be Karush-Kuhn-Tucker

points.

We emphasize that Assumption 2.1 on lower level convexity is satisfied in a number of real-

life applications of generalized semi-infinite optimization ([24]), but rarely in standard semi-

infinite optimization. Still some of the techniques discussed here can be used to solve standard
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semi-infinite problems with nonconvex lower levels. As an appropriate framework the so-called

adaptive convexification algorithm is presented in [5].

Acknowledgments. The author wishes to thank the anonymous referee for her or his precise
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